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Optimal Arrangement of Systems

by

Philip J. Boland and Frank Proschan

Abstract

e F
‘_ I4
To location Li we are to allocate a “generator"/and n,

"machines" for i = 1, ..., k where n,oz ... 2 . Although the
generators and machines function independently of one another,

a machine is operable only if it and the generator at its loca-
tion are functioning. The problem we consider is that of finding
the arrangement or allocation optimizing the number of operable
machines. We show that if the objective is to maximize the ex-
pected number of operable machines at some future time, then it
is best to allocate the best generator and the n, best machines
to location Ll, the 2Eg;best generator and the ﬂ: next best ma-
chines to 1ocation'L2, etc. However this arrangement is not al-
ways stochastically optimal. For the case of 2 generators we
give a necessary and sufficient condition that this arrangement
is stochastically best, and illustrate the result with several
examples.,
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Introduction.

2 " Mn +...¢

1
be connected to k generators G veesy G

Machines Ml’ M of a similar type are to

1’ Kk We assume that
n, 2 n,2...2mn and that n, machines and a generator are to

be allocated to location Li fori=1, ..., k. All of the machines

at a particular location are connected to the generator thers,

and although all generators and machines function independently,

a machine will be termed operable only if both it and the generator
to which it is connected are functioning. We let pi(PZj) be the
probability that machine i (generator j) is functioning at some

specified time t., in the future. Let xi(xzj) be the indicator

0
random variable which is 1 if machine i (generator j) is func-
tioning at time t, and 0 otherwise. For any permutations o of

{1, 2, ..., kY and T of {1, ..., n, « n, ¢ ...+ nk} we let Ag

1
represent the allocation or arrangement whereby machines l'
N d generator G__., are allo-
Mntnl"""i-l’l). 'un(nIO...oni) and gene o(i)

cated to location L.1 fori=1!, ..., k.




Arrangement A n

/ o
location L, u(l) <:::::::::° MH(Z)

° MII(n

n(nl*l)

Mn(nl*Z)

location L2 0(2)

Mn(n14n2)

location Lk a(k)

n(“l”"’nk-l‘l)
+2

Ng will be the random variable indicating the number of

operable machines at time to when using arrangement Ag. Hence

NG * Yoy Fneny* ) *

* XZo(k)(xn(nlt...onk_lol)”"’ xn(nlo...onk))'
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When Il (respectively o) is the identity permutation we drop the
symbol H(o0) in the notation Ng. For example
N = x21(x1¢...0xn1)*...oxzk(x +...¢X ).

ﬂl"-.."ﬂk_l“1 nlt...+nk-

Without loss of generality we assume that the generators and ma-

chines have been labelled so that Py; 2Py 2 -o: 2Py and

Pp2Py2... 2 pn1+...onk.

The problem we consider is that of determining the arrange-
ment Ag which in some sense "optimizes' the number NZ of operable
machines at time t, We show in Section 1 that N is always opti-

mal in the sense of maximizing the expected number of operable

machines at time to. That is, the optimal arrangement is to allo-
cate the best generator and the n, best machines to location Ll’
the an

best generator and the next n, best machines to location
Lz, etc. Although E(N) » E(Ng) for all Il and o, it is however

not true that in general N sthg (N is stochastically larger than
Ng) for all It and g. In Section 2 we investigate the situation of
2 generators (k = 2), and we show for example that when

Pp2..c 2Py >Pp 202D, on, z.l, a necessary and suffi-

2
cient condition for stt Ng for all 1 and ¢ is that

[ pZI [ p22 N qnlﬁ'z- . -qn10n2 h 1
- b - ’ where g = 1 - p.
1 pzx 1 pzz ql...qnl_l q P

—— i
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Such a characterization is of considerable interest, for when
re%f Ng for all T and o, N clearly represents the optimal arrange-
ment in every sense of the word.

There are of course many variations of this problem. Instead
of the terminology "machines' and ''generators' we may consider for
example telephones and switchboards, or computer terminals and
computers, or speakers and amplifiers. Although our "machines" or
"generators' are usually of the same type — that is to say they have
a similar life distribution — they might be of different ages
which would enable us to rank them according to the probability of
their functioning at some specific time in the future. Also more
generally we could consider problems with more than two ''stages'
(for example a three '"stage" problem involving ''generators', "power
relay mechanisms", and "machines").

For results of a related nature, see Derman, Lieberman, and

Ross [1972] and [1974].

1, Optimizing the Expected Number of Operable Machines.

We begin by proving some elementary inequalities.
Lemma 1.1. Let Py; 2 Pyy 2 0 and Py2Py2 ... 2 p“l*"z z 0 where

ny 2 n,. Ifc and N are arbitrary permutations on {1, 2} and

{1, 2, ..., n, ¢ nz} respectively, then

Pri(Py*.--*P,. ) *+ P,,(P +...4p
211 ny 22 n101 nlonz)

2 920(1)(Pn(l)*""Pn(nl))’on(z)(Pn(nl+1)"'"Pn(nl.nz))' (1)
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Proof. a) We consider the case where o(1) = 1. Defining

v={1, ..., nl}/{n(l). NN n(nl)} and V = {H(l),....n(nl)}/{l,...,nl}

we see that |U| = |V| and moreover that p, 2 P; whenever i ¢ U and
j € V. Therefore
P (I pi- I P)2p,(Y py- I po)
Whiey r jev T 25y 1 ey I
from which (1) follows.

b) Suppose now that o(1) = 2. Now

pl+...Opnl-(pn(n101)+...opn(nl‘nz)) =

P +...%p -(p 4...%p )
n(1) n(ng) ngel n, +n,

and each of these two (equal) expressions are 0 since n, 2 n,

1
and the pi's are nonincreasing. Multiplying on the left by Py
and on the right by P,, (<P,;) and transforming we obtain (1). Il

Using Lemma 1.1, we may prove the following extension.

2 pn1¢...0nk z 0

where n2n, 2...2m. If o and 11 are arbitrary permutations on

{1, ..., k) and {1, ..., n1+...¢nk} respectively, then

§ n1+.i.+ni § n1*..i¢ni

Pai 2 pzo(i) | S .
, . - . n(i)
i=1 J=n1+...0ni_l¢1 i=] J=n1+...¢ni_l+l

Theorem 1.3. E(N) 2 E[Ng) for all permutations ¢ and I of

{1, ..., k} and (1, ..., n10...+nk} respectively.




-6 -

Proof. We are assuming that generators and machines function
independently of one another and hence E(ijxi) = ijpi for any

j and i. Therefore given o and I,

N,+...+*¥N.
END) E[]fx [IZ ' X ]]
N = . .
o is1 W en 4 en, 1 10D
k nl’...‘ni
) izl Pao(1) j=n1+§..¢ni_l¢1 Pry|

and hence the theorem follows from Lemma 1.2. ||

Application 1.4. Theorem 1.3 implies that if our criterion is

to maximize the expected number of operable machines at some time
t, in the future, then the optimal policy is: Determine which loca-
tion needs the most (“l) machines, and then allocate the best gene-
rator and n, best machines to that location. Next find the location
needing the next largest number ("2) of machines. Allocate to this

location the an best generator and the next n, best machines.

Continue in this fashion.

Remark 1.5. It should be clear that generalizations of Theorem
1.3 can be made to problems with more than two "stages", although

we do not give details here.
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Proof. If pn(n) =

“Tin(1)+...¢xn(n_l)
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2. Stochastic Optimization of N,

We assume in this section unless otherwise stated that we "

are dealing with 2(k = 2) generators, and for ease ¢of notation
write n = n, and m = n, (n 2 m). Initially we confine ourselves
to arrangements of the form An, that is where the best generator
is allocated to the location L1 needing the most machines (n).
Given a specific permutation I of {1, ..., n, ..., n + m}
we can without loss of generality assume that N(1) < ...< [i(n)
and NI(n+l1) < ... < N(n+m). If N(n+l) < N(n) (otherwise @I = identity),
we define 1° by n°(i) = n(i) for i ¢ {n, n+l1}, N°(n) = N(n+l), !
and 1°(n+¢l) = N(n), We now investigate conditions under which
Nn' is stochastically superior to Nn (i.e., Nn StlJH

If E is an event in a probability space, we use the notation

Probability (E) = P(E) = [E].

Lemma 2.1. Let Py; 2 Py 2 0. Forl1 <rs<nq, P[Nn 2T} 2 P[Nn 2 r]

if and only if ’

[ Pa ] [ Pzz (n02) X (nem) “T~ 1]

1-p1)/ 1-Py, Xpey*--- xn(n-1)=r‘1] '

n’ - 1
Pi(ne1)’ then P[N" > r] = P[N" 2 r] and

[xn(n*2)’°"+xn(n*m)=r'1]
=r-1]

€ 1, and so the result is true.

e

D e el el etk
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Hence without loss of generality we may assume Pn(n) < Pn(nol) .

Now

n+m

|
[N" 27)=p, P, § X271 ¢ Py (o) Xy 1y * - * X (0 1) X (ne1) 2]

* P22 (P Xy ()X (ne2)* Xy (nom) 27)

n+m

2 PyyPo,l § Xj2rl + P21 (-P) Xpeny* - X e 1y ¥ (my 27)

* P (1P Bynery * Xpqne)* - Xy (nemy 27)

=N 2 r)

p21(1'p22){[xncl)+"' zr]-[x

X (n-1) " nnen)  TEO MR TC IS DAL TPALLID

2 Pzz(l‘P21){[xn(n01)*°"*xn(nom)zr]‘[xn(n)*xn(n+2)*'"*xn(nom)zrl}

<> (since pn(ml) > pn(n))' Thus

[ & ]///[ P22 |, Pamen) X pcnom 1 Dpm) Frins2)* - pcaem >

1-p 1-p - *
21 22J [xﬂ(l)+.“+xﬂ(n-1)‘xn(“"’l).r] [Xn(1)4... Xn(n)zr]

*Prnen) ane2)*  Xn(nem 2T N (ne 1y By ne2y X (nemy 271

/
" P ey Hunem)® -9y Krne2y* - gnemy 211

(pll(ml) [xl'l(l)*' . '*xn(n-l)zr'l]’qﬂ(ml) [xn(1)+. . .+Xn(n-1)zr]-

" Pam) Preny® -2 o ) Koyt X a2l -
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2r-l]-[XnLE’2)¢...+Xn(n§m)zr]}

2r-1]-[Xx

. (Pn (n’l)-pn(@){[xn(nOZ).' . .OXn(n’m)

‘xn(n-l)zr]}

Prine1) Preny? ) *Xnn-1y eyt

i [qun*Z)"‘"xn(n*m)zr'l]

I ]

[xn(l)*""xn(n-l)=r-1]

Remark 2.2. Note that if r = 0 or r > n, then P(N"'zr)=P(anr).

Lemma 2.3. For 1 <r <n,

n-1

[xﬂ(n¢2)""’Xn(n*m)=r'1] < pn(n*Z)"'pn(nor)qn(n¢r+l)"'qn(nom)[r-l]
n-1)

Dy =™ Prguersy Prin )y oe e !

Proof. In what follows, cj will denote a binary variable taking

the value 0 or 1.

[Xn (n“Z)" . .4)%(n¢m)=r-l]
[xn(l)""’xn(n-x)”’ll %

) €ne2 €nem ql'en*z ql’enﬁm ’
) en’2+...¢en’m=r-l t(n+2 N(nen) N(n+2) NM(n+m)
) pel €n-1 ql'cl 1-e 1 i
€+...4c_.=r-1 N(1) M(n-1) A(1)  TN(n-1)
1 n-1 :
i

As the pi's are nonincreasing in i, it follows that

n+2 €nem l'enoz 1-¢ en

P ces q R | <p .o P q .. .q ]
M(n+2)  M(nem) M(n+2) MN(nem) N(n+2)  N(ner) N(nsrel)  N(nem) o

€
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and

€ € l-¢ 1-¢
1 -1 1 -1
P q q "2q

p . cen .. q p co.p .
(1) N(n-1) N(1) I(n-1) Q) n(n-r) N(n-r+l) n(n-1)

Hence
[X LIRS ¢ =r-1) m'l]p ...p q ...q
N(n+g) N (nem) Ar-1;5N(n+2) N{n+r) N{ner+l) N{n+m) I
n-1 v
Krny*  *1m-0" 1 (r-1/Prga-re1y " Pren-1) (1) U (n-1)

Lemma 2.4. Assume that Pp2z...2p 2-% and that 1 < r < n. Then

n+m

-1
[r-lJpn(n02)"'pn(n¢r)qn(n0r+l)'"qn(ggm)

n-1
lr-lJPn(n-r+1)'"pn(n-l)qn(l)"‘qn(n-r)

-1
( [r—l]pn—rd' “Pno1%ere1” "Inem =
~ In-1
r-1 pn62”'Pn+rq1"‘qn-r

c..
T

: . ; X 1
Proof. Since P; is nonincreasing in i and P; 2 7 Pi% < P;i41%ie1
for alli=1, ..., n+m- 1. We may therefore obtain an upper

bound for

pn(n+2)"'pn(n¢r)qg(n0r01)"'qn(ggml

Ppen-re)  Pon-1)% (1) * * W (n-1)
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by arguing that we may assume that every index of q in the

numerator is > every index of p in the denominator, which in b
turn is > every index of p in the numerator and which in turn

is > every index of q in the denominator, from which the result

follows. ||

Lomma 2.5. Assume Pp2-...2P

1
nem 2 E-and that 1 < r < n. Then

(m-1)
_1|Pn_ cesP .o
c = r-1)n-rel n lqn0r¢1 qn*m is + in r.
T n-1
kr-lJpn+2"'pn¢rql"'qn-r

n-1
Proof. Note that Cr = 0 for r > m since in this case [r-l] = 0.

-1 n-1
It is easy to verify that [t-lJ///[r-l] is + in r. Now note that

a2 Snen > Pn-1%n43° *Ynenm

%1 Ppe29y°-+9-2 }

X 1 . : .
since p_, 2 Ppeo 2 L which implies that Pne29ne2 2 pnflqn-l‘
It follows that C1 P C2. and similarly one can show that

Cp2Ciz...2c. |

1 s .
Theorem 2.6. Let p21 2 p22 and P 2 ... 02 p“‘_m 2 7 A sufficient
st
condition for N2 Ng for all permutations o and I of {1, 2} and

{1, 2, ..., n + m} respectively is that :
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Py P2, 92 "nen
> . (2)
1-p51 J =Py L PEREL

Proof. a) We show initially that if (2) is satisfied, then
t
N> N for all I

n X . R
Let A* be a given arrangement or allocation. We can without

loss of generality assume that NI(1) < ... < II(n) and N(n+1)< ...< MI(n+nm).

If 1 is not the identity, then N(n+l) < N(n) and we define I“ by

n°(i) = n(i) for i ¢ {n, n+l}, N°(n) = A(n+l1), N°(n+1) = N(n).
ez’ " Inem
ql"'qn-l

Since (2) is satisfied and C1 = , it follows from

- st
Lemmas 2.1, 2.3, 2.4, and 2.5 that Nn 2 Nn. We proceed now in
this fashion where at each new step we obtain a new arrangemen?
which is stochastically superior to the previous one until we obtain

a permutation f" such that II"(i) < n for all i =1, ..., n. In other

n* st st n- i
words N= N 2 ... 20" 2N.

st 1
b) We now show that N 2 N, for any Il and o where o(1) = 2 and o0(2) = 1.

We want to show that

st
Nale(x1¢...4xn)+x22(xn‘1¢...¢xn’m) > xzz(xn(1)0...+xn(n))
+ x21(xn(n+1)"".xﬂ(n*m))sNg'

1t suffices to show that for 1 < r < n,

Py (1°p22) [xl" . .anzr]opzz(l-pzl) [Xm. 1t .oxm_er]

2 P (1-Po) (X ey * - =X ) 24Py (1-P22) Xy a1y * s+ *Xppenemy *7
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or equivalently that

[ Py ] { Py ‘z [xn(l)""*xn(n)zr]'[xnol°""xn+m2r]

by )/ 1opy))  [Xpee..ox ar)-[x >r]

1o *Xh(nem)

But the right hand side of the last expression is <l and Py 2 Py

from which the result follows. ||

1

Corollary 2.7. Let Py 2 Py and Py 2 e 2P >Ppyy 2 o0 2P 25 -

n+m

st
A neccssary and sufficient condition for N 2 Ng for all permutations

o and I of {1, 2} and {1, ..., nem} is that
[ P21 ]//T P22 ] 5 o2 “Inem 5
1’lej 1'Pzzj L IEERL A

Proof. By Theorem 2.6 the condition is sufficient. Consider now

the arrangement Ag where o(1) = 1, n(i) = i if i ¢ {n, n+1}, and

In) =n+ 1. If N Ng for this N and o, then
[N = 0] < [} = 0]
or

pZI(l-pZZ) [ql' +<Q,"9-- 'qn-lqntllspzztl-pZI) [qnqn"'Z’ “*Inem a1 -kam]

or

[ P2a1) A P22 ], o2 nen

since q_-q__,<0. ||
1
l'pzlj ll'Pzzj qlo . oqn_l nome

- -

i
P
L
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Remark 2.8. Theorem 2.6 and Corollary 2.7 cicarly show that when
generator Gl is sufficiently better than generator G2 (to the ex-

tent that

[ Pn ]/ P2r ]2 qn+2"'°-n¢m]' then

I'szJ 1'1’22J ql"'qn-lJ

one can do no better than to allocate Gl and the n "best" machines

to location 1.

Example 2.9. Location 1 needs 3 machines and location 2 needs

2. Suppose that Py = .99 and Py = .88 are the respective proba-
bilities of the two generators functioning at some future time to,
while Py = .88, Py = .86, Py = .84, Py = .82, and Pg = 80 are the

respective probabilities for the machines. Since

:99 .20
[ 01]///[ 12] 13.5 2 11.9 = * TI2) (e ¢ e e do no better than

to allocate G 1, 2. and M3 to location 1 if we are interested

in maximizing the number of operable machines at time to

Example 2.10. Suppose n = m = 5, Py = .90, and Pyy = .75.
If p, e [.9, .92] for all i = 1, ..., 10, then sttug for all

1 and ¢ since

[le \/[ Pzz] [_-;_g_] .32 [ 33} > 9,959 .
1-pyy )/ L1-pyy) 48,959,
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Example 2.11. Suppose n = 4, m = 3, and P; € [.9, .92] for all
i=1, ..., 7 (that is all the machines have reliability at time

ty in the interval [.9, .92]). In this case,

2
s 3 = 19.5.
q;9,95 (.08)

Mence we see that in order for N to correspond to the stochastically

p21 P22 ]
best arrangement, must be rather large. If Py = .9
1-pyy )/ Li-p,))

and Py = .75 then this is not the case, although if pzl = ,99 and

Py, = .75 this 1s true.
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